Uptake and accumulation of 1-methyl-4-phenylpyridinium by rat liver mitochondria measured using an ion-selective electrode.
نویسندگان
چکیده
The compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes selective destruction of nigrostriatal dopaminergic neurons in primates, giving rise to a condition resembling Parkinson's disease. The toxicity of MPTP is believed to be due to its metabolite 1-methyl-4-phenylpyridinium (MPP+). MPP+ is an inhibitor of mitochondrial respiration at the NADH-ubiquinone oxidoreductase site and this, together with its selective transport into dopaminergic nerve terminals, accounts for its neurotoxicity. In this paper an electrode selective for MPP+ was developed and used to measure the rate of uptake and the steady-state accumulation of MPP+ in rat liver mitochondria. The initial rates of MPP+ uptake were not saturable, confirming previous work that the transport of MPP+ is not carrier-mediated. The membrane potential of mitochondria respiring on succinate was decreased by MPP+ and the steady-state accumulation ratio of MPP+ did not come to equilibrium with the mitochondrial transmembrane potential gradient (delta psi). The effect of the cation exchanger tetraphenylboron (5 microM) was to increase the initial rate of MPP+ uptake by about 20-fold and the steady-state accumulation by about 2-fold. This suggests that there may be a mechanism of efflux of MPP+ from mitochondria which allows MPP+ to cycle across the membrane and thus decrease delta psi. These data indicate that MPP+ interacts with mitochondria independently of its inhibition of NADH-ubiquinone oxidoreductase, and these alternative interactions may be of relevance for its mechanism of neurotoxicity.
منابع مشابه
Dmd061002 89..92
Nicotine is an addictive alkaloid in cigarette smoke and is responsible for tobacco dependence. It is important to consider the bloodto-liver transport of nicotine to understand the nicotine elimination from the body because most of the nicotine is converted to inactive metabolites by cytochrome P450 localized in the endoplasmic reticulum of the hepatocytes. In this study, the blood-to-liver tr...
متن کاملComparative toxicity and antioxidant activity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its monoamine oxidase B-generated metabolites in isolated hepatocytes and liver microsomes.
MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is converted by monoamine oxidase B to its putative toxic metabolite MPP+ (1-methyl-4-phenylpyridinium ion) via MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium ion). Both the parent compound and these two major metabolites were toxic to isolated rat hepatocytes with MPDP+ being the most toxic and MPP+ the least effective. MPP+ produced a slight...
متن کاملRole of 1-methyl-4-phenylpyridinium ion formation and accumulation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity to isolated hepatocytes.
The parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is converted by isolated hepatocytes to its primary metabolite, the 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP+), and to its fully oxidized derivative, 1-methyl-4-phenylpyridinium ion (MPP+). Only the latter, however, accumulates in the cells. Incubation of hepatocytes in the presence of MPDP+ also res...
متن کاملNewly Developed Mg2+–Selective Fluorescent Probe Enables Visualization of Mg2+ Dynamics in Mitochondria
Mg(2+) plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg(2+) regulation and the Mg(2+) concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg(2+) in mitochondria in intact cells. Here, we have developed a novel Mg(2+)-selective fluorescent probe, KMG-301, that is functional in mitochondria. This pro...
متن کاملInvolvement of the H+/organic cation antiporter in nicotine transport in rat liver.
Nicotine is an addictive alkaloid in cigarette smoke and is responsible for tobacco dependence. It is important to consider the blood-to-liver transport of nicotine to understand the nicotine elimination from the body because most of the nicotine is converted to inactive metabolites by cytochrome P450 localized in the endoplasmic reticulum of the hepatocytes. In this study, the blood-to-liver t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 288 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1992